Search results

1 – 3 of 3
Article
Publication date: 18 December 2018

Youssouf Belabed, Bachir Kerboua and Mostapha Tarfaoui

The sustainability of the structures is not only a technical goal, but also a matter of social and environmental values. This requires the researchers to use very rigid, highly…

133

Abstract

Purpose

The sustainability of the structures is not only a technical goal, but also a matter of social and environmental values. This requires the researchers to use very rigid, highly durable and corrosion-resistant composite structures in order to achieve the technical, environmental and social goals. The purpose of this paper is to present an original work on reducing the interfacial stresses of bonded structures with fibre-reinforced polymers (FRP) plates based on new taper design.

Design/methodology/approach

In this proposed concept, the effect of combined taper is investigated on reducing interfacial stresses, attempting to enhance the structure performance and address the debonding problem that comes with reinforcing techniques. This research is carried out by using finite element analysis, incorporating many new parameters.

Findings

As a result, a new solution is discovered that combined taper in both adhesive layer and composite laminate, which significantly reduces the interfacial stresses at the end of the FRP plate. Additionally, a parametric study is carried out in order to determine the optimal configurations of taper dimensions as well as other parameters that influence the stress concentration distribution at the edge of the adherends.

Practical implications

This new design regarding the reduction of interfacial stresses will help in increasing the lifespan of damaged structures reinforced by FRP composites, preserving thus its technical, historical and social values.

Originality/value

The paper uses straight, concave and convex fillets with inverse taper as a new design solution with new parameters including thermo-mechanical loads and pre-stressed FRP plate with multi-layer, fibre orientation and shear-lag effects.

Details

International Journal of Building Pathology and Adaptation, vol. 37 no. 2
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 14 August 2019

Ahmed Bekhadda, Ismail Bensaid, Abdelmadjid Cheikh and Bachir Kerboua

The purpose of this paper is to study the static buckling and free vibration of continuously graded ceramic-metal beams by employing a refined higher-order shear deformation…

Abstract

Purpose

The purpose of this paper is to study the static buckling and free vibration of continuously graded ceramic-metal beams by employing a refined higher-order shear deformation, which is also the primary goal of this paper.

Design/methodology/approach

The proposed model is able to catch both the microstructural and shear deformation impacts without employing any shear correction factors, due to the realistic distribution of transverse shear stresses. The material properties are supposed to vary across the thickness direction in a graded form and are estimated by a power-law model. The equations of motion and related boundary conditions are extracted using Hamilton’s principle and then resolved by analytical solutions for calculating the critical buckling loads and natural frequencies.

Findings

The obtained results are checked and compared with those of other theories that exist in the literature. At last, a parametric study is provided to exhibit the influence of different parameters such as the power-law index, beam geometrical parameters, modulus ratio and axial load on the dynamic and buckling characteristics of FG beams.

Originality/value

Searching in the literature and to the best of the authors’ knowledge, there are limited works that consider the coupled effect between the vibration and the axial load of FG beams based on new four-variable refined beam theory. In comparison with a beam model, the number of unknown variables resulting is only four in the general cases, as against five in the case of other shear deformation theories. The actual model represents a real distribution of transverse shear effects besides a parabolic arrangement of the transverse shear strains over the thickness of the beam, so it is needless to use of any shear correction factors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 13 April 2015

Ismail Bensaid, Bachir Kerboua and Cheikh Abdelmajid

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with…

Abstract

Purpose

The purpose of this paper is to develop a new improved solution and a new model to predict both shear and normal interfacial stress in simply supported beams strengthened with bonded prestressed FRP laminates by taking into account the fiber volume fraction spacing that play an important role on the interfacial stresses concentration.

Design/methodology/approach

The study has been conducted by using analytical approaches for interfacial stresses in plated beams. The analysis is based on the deformation compatibility approach where both the shear and normal stresses are assumed to be invariant across the adhesive layer thickness. In addition, an unrealistic restriction of the same curvatures in the RC beam and FRP panel commonly used in most of the existing studies is released in the present theoretical formulation.

Findings

To verify the analytical model, the present predictions are compared first with those of (Malek et al., 1998; Smith and Teng, 2001) in the case of the absence of the prestressing force; for the second time, the present method is compared with that developed by (Al-Emrani and Kliger, 2006; Benachour et al., 2008) in the case where only the prestressing force is applied. From the presented results, it can be seen that the present solution agree closely with the other methods in the literature.

Originality/value

The paper puts in evidence a new originality approach theory, taking into account the mechanical load, and the prestressed FRP plate model having variable fiber spacing which considers a strength rigidity and resistance of the damaged structures, which is one aspect that has not been taken into account by the previous studies.

Details

International Journal of Structural Integrity, vol. 6 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 3 of 3